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ABSTRACT

It is well known that if @ly...,a are positive
nr .1/r
numbers, then the mean (iai/n) is increasing in r.

In this paper we obtain conditions for monotonicity of the

r.1l/r

i) of means.

ratio (ZaI/Eb
Monotonicity of a ratio can be viewed as a form of total
positivity. The theory of total positivity is exploited to

obtain more general results.

The proof of monotonicity is based on a theorem giving
sufficient conditions for majorization. Several other appli-
cations of the majorization theorem are given. One applica-
tion concerns a stochastic comparison between a function of
order statistics from a distribution with increasing failure
rate average and the same function of the order statistics
from the exponential distribution. Another application is
to a comparison between the condition number of a positive
definite matrix and the condition number of a pélynomial in

the matrix.
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1. Introduction,

It is well known that if a

fai/n

1

RARE, a_ are positive

1/r
numbers, then the mean is increasing in r. In this

paper, we first obtain conditions for monotonicity of the ratio

n n 1/r
Z ai/ Z bi) of means (and for its continuous version). The
1 1

conditions for monotonicity permit bl =F . 4p = bn = 1, so that

Zbi = n, and thus the classical result becomes a special case.

Since monotonicity of a ratio can be viewed as a form of
total positivity, the theory of total positivity is exploited

(Section 3) to obtain more general versions of the result above.

The proof of monotonicity is based on a theorem which gives
sufficient conditions for majorization. Because majorization leads
to many different forms of inequalities (see Hardy, Littlewood,
and Pdlya (1992), and Beckenbach and Bellman (1961)), it is not
surprising that a diversity of applications of the majorization

result are obtained.

One application concerns a stochastic comparison between a
function of arder statistics from a distribution with increasing failure rate

average and the same function of the order statistics from the exponential



distribution. The use of these stochastic comparisons in testing certain
statistical hypotheses is pointed out (Section 5).

Marshall and Olkin (1965) compare the condition number of a matrix
A with the condition number of its symmetrized version AA*. The
majorization result is applied (Section 6) to obtain a comparison between
the condition number of a positive definite matrix and the condition
number of a polynomial in the matrix.

In the final application, several inequalities concerning absolute
deviations are obtained (Section 7) which generalize known results.

Remark. To avoid awkward notation we often omit subscripts in sums

or in vectors, e.g., Zx log x = X xilog Xy and

r r

ar _ Hl B.n
§= n o’ T o

TR

2. Majorizetion.

To determine conditions on (al,...,an) and (bl,...,bn) such that

l/r

g(r) = (Zar/Zbr) is nondecreasing in r, one might set d log g(r)/dr > 0,

or equivalently,

e S (T )

Inequalities of this type can be obtained under appropriate condi-

tions using majorization.

k
Definition 2.1. If & > ... 2a, b1> cve 2B, za ¥bd
n
fOI’ k=l, 2, cco,n-l, and ZEJ zbJ’ then a=(a ’aoo’a) is
1 1

said to majorize b = (bl""’bn)’ written a > b.

Remark. An alternate definition of majorization is sometimes used:



A cet (a) is said to majorize a set (b} if, possibly after ordering
of the elements of each set, the conditions of Definition 2.1 are
satisfied (Hardy, Littlewood, and Pdlya (1952), page '+5).

Definition 2.2. A rcal function 9 of n real variables is seid

~ aQ - .
to be a Schur function if for every pair 1 £ j, (xi XJ) (rxi xJ/ > 0
These concepts are linked in the basic theorem:

Theorerm 2.3. (Schur (1923), Ostrowski (1952)). Let (x) be defined

for Xp 2 e 2 ®(a) > p(b) for all ea>»b if and only if ¢ is a Schur function.

Remark. If the alternate definition of majorization is used (see

the rerark after Definition 2.1), then the requirement that ¢ Dbe
syrmetric rnust be imposed.
Now XZx log x 1s a Schur function since all functions of the form

531: g(xi), g convex, are Schur functions. Thus to prove (2.1) it is

r r

sufficient that (a/Za) » (B/ZB), where o =a; and B =by, 1 =1...,n0.
Thecrem 2.4. If al>0, 345 an>0, Blz ...ZBn>O, and
tﬁl e -
2] 10 p
a—ls..._\'a—';,‘thcn (Z-TI)}(E).

Proof. liote that the lLypotheses imply @, > ... > an > 0. Thus,

1

we must orove that tor k=1, ..., n - 1,

K n k n
{:aj/%al > );Bj/gﬁz .

h
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Using Theorems 2.3 and 2.4 with (2.1), we have thus d~rived(for r > 0):

Theorem 2.5. If a, > Qs o5p a >0, b
l‘l bn G
— < ... —, then (Za /&b

a, - - a
1 lid

A more direct, though possibly less clearly motivated, proof of

lZ LI an>0,

r)l/r is increasing in r.

Theorem 2.5 is based on an application of Theorem 2.3 to the Schur

function m(xl,...,xn) =ZIx", t > 1l. Again for r > 0, let ai = ai

and Bi = bi; for r <0, let a, = a’ i Then by

17 %neg41’ P1 = Pnogar
Theorems 2.3 and 2.4, Z(ar/Zar)t > Z(br/Zbr)t. The conclusion for
r >0 (r < Q) is a consequence of choosing t = s/r, s >r (s <r).
Finally, monotonicity in r follows from the continuity of (Zar/Zbr)l/r
at r = 0.

An important example in which the conditions of Theorem 2.L are
satisfied is obtained by choosing ai = W(Bi), where ¢ 1s a non-negative
starshaped function. (A real function ¥ defined on [0,») is said to be
starshaped if ¥v(x)/x 1is increasing in x. An interesting example of
starshapedness is ¢ convex on [0,»), ¥(0) < 0. Note that a non-negative
starshaped function ¢ must be increasing and must satisfy (0) = O.

Such functions are discussed by Bruckner and Ostrow (1962).) With this
choice, assuming By > ... >8 >0, it follows that a > ... >a >0,

< 2
so that by Theorem 2.4,

(2.) & <8 - & .

5. An Extension Using Total Positivity.

Theorens 2.4 and 2.5 can be viewed as theorems on total positivity
a:.d can 'e proved by the methods of total positivity. A matrix (tij)

of :on-negative numbers is said to be totally positive of order 2

(TP2) if all its 2 X 2 minor:c are non-negative. Similarly, a non-negative



cunction t(x,y) of rcal varisbles x belonging to X and y belonging
to y ic sald to te totally positive of order 2 if, for all x, < x,

it ¥ and y VA iny , the determinart

Ieuds
t(xl,yl) t(xl’ye)

det > 0.
t(xe)yl) t(xa)yz)

Suppose the tiJ are non-negative; then (tij) is clearly TP2 if

and only if t, is increasing in J for each 1.

141, %

Let t., =&, > 0y t
1 J > 2 J
increasing in 1 1is equivalent to (tij) being TP2. Since it is

k £ k L
easily concluded from Theorem 2.4 that Z ai/ za, >z Bi/ % BJ for

=f,>0, =12, «.., n; then B{/OIi

1 1 J7
all k < £, Theorem 2.4 essentially states that if (tiJ) is TP2
k n
ar.d Tik = ng tiJ’ then (Ti.j) is TP2. Write Tik = JE]_tiJHJk, where

HJk is 1 for J<k andis O for J >k. Since (ij) is TP,
Thooren 2.4 follows from a standard theorm of total positivity which

asserts that
p(x,2) = f@l(x:y) @Q(Y)z) du(b’)

is TP, provided @l(x,y) and cpe(y,z) are each TP,.
Because morotonicity of ratios can bé interpreted as total

positivity of order 2, Theorem 2.5 also is a statement of total

positivity. This suggests the following generalization:

Theorem 3.1. let g(x,y) be TP2 and decreasing in y for each

X. Then
o 1/5
Al D)= (et Gy ) i) ]

is TP..



Proof. Define
1

u(x,s) = log h(x,s) = s log /\gg(x,y) du(y)
J

then
: u(x,s)
N s u(x,s
-5 g dn X 0S
1. 1 1 1
rs, st e s
= gdu/g gloggdu - /g g du /g logeg du
/r\ l N %-l
gsdu jg gxdu
= dJet 1 1
P rst '
|, gloggdn g gloge dﬁ
\ o/
i 0
s st
g (xy,) & (xy,) e (xy,) 1 log g(x,y,)
S5 1 1/ Ex\%y 1
= . det det du(yl) du(ye)
o 1 1
Y1S¥ = -1 1 log g(x,,)

g (ny,) & (%y,) e (xy,)

from Problem ©8, Pdlya and Szegd (1925). The first determinant of the

integrand ic non-negative since g(x,y) is TP2. The second determinant

is non-positive since g(x,y) 1s decreasing in y for each x. The
rzsult follows frow the fact that a non-negative function h(x,s) 1is

TP, if and ouly if 32103 h(x,s)/dx 35 > 0. I

To obtain Theorem 2.5 from Theorem 3.1, let y range over the

velucc 1, &, ..., n and choose g(1l,1i) = 8, g(2,1) = by, and u(i) = 1/n.

V.. car. exterd Theorem 2.5 slightly bte choosing w(i) =p, > 0, Zp, = 1.

i



1/r

Under the hypothesis of Theorem 2.5 we conclude that (Zpa®/pb’) is
increasing in r . A further extension is obtained in the next
section.

4. Monotonicity of Ratios of Means.

With Theorem 2.5 in mind, consider right contiruous distributions
G and F of non-negative random variables approximated bty ostep functions
with jumps 1/n at a, and b, respectively, 8, > ... >a > 0,
by > ... 2b >0. Then E(ai) ~1i/n = f(bi) (where F=1-F, G=1-G),
and the condition bi/ai increasing in 1 becomes F-l(i/n)/a-l(i/n)
increasing in i. In the limit, we obtain the condition f'l(p)/ﬁ-kp)
increasing in p.

To avoid the necessity of assuming that the distribution functionc

are strictly increasing, define
__1( = -1
H (p) = inf{x > 0: H(x) <p}, H “(p) = inf{x > 0: H(x) > pl,

where H 1is a distribution function.

Theorem 4.1. If F and G are distribution functions,

F(0) =0 =06(0), and f-l(p)/i'l(p) is increasing in p, t4ien

j}xrdcfx)fl/r

UxFaF(x)
is increasing in r.

Proof. Using the approximations above, a limiting argument may be

used to obtain the result from Theorem 2.5. Alternately, it may be

obtain=d as a cpecial case of Theorem 5.1 by choosing g(l,y) = 5-1(

g(2,y) = F"l(y) and takiug a to be uniform on [0,1]. 1

¥)s



Whe:. F(O) =0 =G(0 ), F aid G are continuous and have
continuous inverses, the hypothesis of Theorem 4.l has the following
equivalent forrulations:

(1) FHp)/T (p)

O~ p<l,

il

F-l(l-p)/G-l(l-p) is increasing in p,

(i1) gt F(x)/x = G-]'F(x)/x is increasing in x 1in the support
of F,

(1i1) F(x) = G(¥(x)) for come no. -negative starshaped function V,

(iv) If X 1is a random variable with distribution F, then ¢(X)
has distribution G for some non-negative starshaped .

We say that F is starshaped with respect to G if (i), (iii) or

(iv) holds, because (i), (iii) and (iv) are equivalent even without the
continuity restrictions on F and G. Since the equivalence of (iii)

and (iv) is easily verified, we need show only that (i) and (iii) are
equivalent. Let J p Dbe the set of all x such that x = inf(z: H(z) < p)
for some pe(0,1).

Theorer 4.2. If F and G are right continuous distribution
fucetions suech that F(O ) =G(0 ) = 0, then F(x) = G(p(x)) for some
ctrictly increasing function ¢ such that ¢(x)/x is increasing for all
ple e_ZF if and only if f-l(p)/é-l(p) is increasing in p, 0 < p < 1.

Proof. Suppose F(x) = G(p(x)) for some non-negative strictly

iicreacing % cuch that @(x)/x is increasing in xe.BF. Then

f'l(p) inf{x: F(x) = p) _ inf{x: F(x) < p) _ inf{y: F(y) < p)
G- l(p) inf{x: G(x) :. p) i:.f‘[l'iif(q)-L(X)) = p}  inflp(y): F(y) < p)



¥* *
Now p<p implies y_ >y 4. Thus p<op implies

Yy P(y,) £ you/Py e, eee

Qf |l

Lip) _F Y
=1 > =

(0) TG Xp)
YI ‘-l X /_'l - SE ° . ‘8
llext, suppose F —(p)/ G ~(p) is increasing in p, let y € v

and define o(y) = E-IIKy) = inf{z: G(z) < F(y)}. Then since

Fl i . Fz) < y
F 1(9) - inf{z: F(z) p) = :?Jl) is increasing in p, it follows
G- (D) iflf[z (Z) < v)] P .Y,:)

that 9(y)/y 1is increasing in vy e,ng Also o(y) is strictly

increasing because F(y) is strictly decreasing in Yy e.&F. ||

Some choices of F and G in Theorem 4.1 are of special interest.
I. Let F be degenerate at 1. Then f-l(p)/a-l(p) = 1/6-1(p)
is increasing for all G. In this case, Theorem 4.1 reduces to the

well-known fact that [fxrdG(x)]l/r

is increasing in r for every G.
II. let G(x) = e *. Then the condition i"‘l(p)/'é'l(p)
increasing in p Dbecomes - x-llog f(x) increasing in x. A distribution

F with this property is said to have an increasing failure (hazard) rate

= x

averags (IFRA), since in case F has a density f, - log F(x) = /‘ q(u)du,
v 0

where gq(u) = f£(u)/ F(u) is the failure rate of F. Similerly, if

>-llog F(x) is decreasing, we say F has a decreasing failure (hazard)
rate average (DFRA). The class of IFRA (DFRA) distributions has
applications in reliability theory (see Birnbaum, Esary, and Marshall
(1965)). From Theorem 4.l we see that if F is IFRA (DFRA),

¥ ar(x) /r(r+1) 12T

is decreasing (1ncreasing)in:r2 0. This conclusion
vas obtained for the smaller class of distributions with increasing
(decreasing) failure rate by Barlow, Marshall, and Proschan (1963).

Properties of order statisties from IFRA (DFRA) distributions
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arc developed in Section 5.

Choose F(x) = e™™ and G a DFRA distribution for which

'*rdG(x) = r21ﬁ>0. (A proof that such a distribution exists has been

J o

of taiued by Hermun Rubin and is presented in the appendix.) From
T:corem 4.1 it tollows that [rr/l“(r+l)]l/r is an increasing function
of r>0, &8 result obtained by Minc and Sathre (1904).
- =-1 t
III. Let F(x) = G(xt), t > 1. Then G l(p) = [F “(p)]~ so
e P T W 1 S
that F “(p)/ G ~(p) = [F ~(p)] is increasing in p. Thus, the

corditions of Theorem 4.1 are satisfied, and so

l/r . l/r
[x"dF(x) [x* dF’x)

is increa~ing in r. More generally, if X has distribution F and

Y = ¥(X) has distribution G where > 0 1s starshaped; then

(Slv(x)]" dF(x)/[xrdF(x)]l/r

is increacing in r.

5. Statictical Applications.

I:. the nrecent cection we make csome comparicons involving the order
statistics from distributions F and G, where F 1s starchaped with

rcecpect to G

let X, > ... >X be order statistics from F. Then from (2.2)

1 -—
we have for any ctarshaped ¢ > 0 that
‘ﬁ 4 < v(x;) v(x)
X’ X Zy(x) 0 TylX)

Cor.cequerntly, if F i:c starshaped with respect to the distribution

G, aad %, > ... > X are order statistics from F, Y

2 24 1 > e > Y are

n



11

order ctatistics from G, theu

X X} st |Y Y

(s ey L R e i
- X 7T EX e 5

k Ti k 1
T ) X,/ Y X, is stochastically less than or aqual to ) Y,/ ,, Y,

1 1 1 1
for k¥ =1, ..., n. (A random variable U is stochastically greater

st

than or equal to a randor variable V, denoted by U > V, if
P(U > a] > P[V>a] for all a.)
With (9.1), Theorem 2.3 yields some interesting applications. For

example, choosing the Schur function @(zl,...,zn) = n-lZz2 - 1, we obtain

&)

-2 t

(5.2) i(x,-%)%/ X% < 2y, DY/ TP

Choosing the Schur function @(zl,...,zn) = nZaz/Zz, a; > ... > a

1

> ... > 2 , Wwe obtain

“1 n

(.3) Zaixi/i b;c Zaiyi/Y ,
where X = 2X/n, Y = Z¥/n.

An important special case where F 1s starshaped with respect to
G (introduced in Section 4) is obtained by choosing G(x) = e * and
F IFRA. We discuss the statistical applications of (5.2) and (5.3) in
this case, although the results hold more generally.

I. Consider first the problem of testing the hypothesis that F is
exponential versus the alternative that F 1s IFRA. Because of the
stochastic ordering given by (9.2), a test based on the statistic

ROORE Z(Xi-f)z/i2 is unbiased. (By using different Schur functions,

alternative statistics could be used, yielding unbiased tests.) To
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carry out the test at the level of significance «, determine ka such
that P(R(X) S ka] =q@ when F 1s exponential, and rejJect the hypothesis

k

of exponentiality when R(X) < o

For a test of the hypothesis that F 1s exponential versus the
alternative that F has increasing failure rate, i.e., log f(x) is
concave where finite, see Proschan and Pyke (1965).

ITI. DNext, we discuss testing for outliers when the distribution F

is known to be IFRA. Suppose that X, > ... > Xn are order statistics

is an "outlier," i.e., X, does not

from F unless possibly that X 1

1

arise as an observation from F, but from F, <F, Fl # F.

1
A natural test of the hypothesis that Xl > el 2 Xn all come

from F 1is to reject the nypothesis if Xﬂ/f is too large. If F

is unknown, the distribution of this statistic is unavailable, but since

F is IFRA, it follows from (5.3) with a

st
Xl/i < Yl/-Y-, where Y

l=l’ 82=ooo =an=o th&t

1 > e > Yn are the order statistics from an

exponential distribution. To control the type I error, note that

P;Xl/X > k) < PtYl/ ¥ = ka] = Q.

Although the type II error cannot be determined without knowing
Fl, we can assert that the type II error is smaller under Fé than

under F, whenever F. 1is starshaped with respect to F

1 2 1’
Similarly, a test can be obtained when Xn is suspected of being

a:. outlier; here the test statictic is &V/i’ and we use (5.3) with

8y = +ee =8 = 0, a = - 1 to control the type I error as above.
tore generally, a tesi against the possibility that Xl’ W10 5 Xr and
X5 eees X, are all outliers makes use of (5.3) with 8, = ... =8 = 1,
2 = ELhEl =0, a8 = ... =8 ==-1, The test statistic is

r+] S5=1 S n
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Condition Iiumbers.

A comronly used measure ot the difficulty of numerically inverting

a ron-cingular matrix A 1. its condition nunter c@(A) = p(A) @(A-l),

where ordinarily ¢ is a norm (i.e., p(A) > O when A #0,

o(78) = |7] p(A) for complex 7, p(A+B) < p(A) + 9(B)). Marshall and

Olkin (13v%) show that
(5.1) (A) (A87)
L). C (‘.
) = %

wher. @ ic a unitarily invariant norm (i.e., o(A) = 9(UA) = 9(AU) for
all unitary matrices U). The proof is based in part on a result of

von Neumann (1957) that ¢ 1s a unitarily invariant norm if and only if
there exists a cymmetric gauge function @& such that ¢(A) = ¢(a) for

*
all A, vhere O? aﬁ are the characteristic roots of AA . (A

1

function ¢ on a complex vector space is called a symmetric gauge function
(SGF) if ¢(u) >0 when u #0, ¢(yu) = |7/ o(u) for complex 7,

o(utv) < ¢(u) + ¢(v), and o(u ,...,un) = ®(€lu yeees€ U whenever

)
1 1 il in

ej =+1 and (il, r in) is a permutation of (1,...,n).) Using this,

a more general result than (©.l) is also obtained by Marshall and Olkin

(1905), namely, that if ¢ 15 a SGF and @, > 0, then

r

(5.2) ®(a?,...,ah) o(a o

-r -r
1'% )

is increasing in r > 0 .

The proof of (v.2) rests on the following
lerma ©.1. If u{v, ¢ is a SGF, and g 1s a ron-negative convex

fwi.ction, the:n

(-.2) e(eu)) < ¢(elv))

* S '

paan 3

iy
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The proof of (0.3) was given by Fan (1951) in case (i) g(x) = x, and
iy Marchall and Olkin (1909) in case (ii) g(x) = x L. The proof of
Lerma ¢.l parallels that of (ii) where the only properties of x-l used
are its non-negativity and convexity.

We note that every SGF is a Schur function. The result (6.3) does
..ot hold for Schur functions ¢ without the additional condition that
g 1is increasing.

In Section 2 we have shown that if ¥ > 0 1is starshaped then
(v(B)/Z¥(B)) » (B/Z8). 1In the following, we consider non-negative
BJ where c¢

starshaped functions of the form y(B) = Zc > 0. From (6.3)

J
with g(x) = x we obtain that 0(61/26,---,Bn/26) <

J

Q(W(BL)/ZW(S),---,W(Bn)/ZW(B)). From (6.3) with g(x) = o obtain

that o(ZB/B,,...,Z8/8.) < o(ZW(B)/¥(By)s.-+,Z¥(B)/¥(B,)). By multiplying
these inequalities and using &(7x) = |7| &(x), we obtain

(5.4) 0(By5--+5B,) o‘éli,...,glr:

< o(¥(B))s--o¥(B)) © Wé—ly reeogmy|
n

The special case V¥(B) = Bs/r,o<r<s, and Bi = O{, I =1, 2, ..y, 0

yields (6.2).
If B 1is a positive definite matrix with characteristic roots

> +++» By then the characteristic roots of y(B) = Zc JB'j are

v(ﬁi) = ZcJBi. (For any positive definite matrix C, the square root

¥*
of the characteristic roots of CC are the characteristic roots of C.)

g

Hence, in terms of condition numbers, (6.4) becomes

(5.5) B < < (¥(®))

for any positive definite matrix B.
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For ary matrix A and any unitarily invariant norn,

* * L
c_p(A) = cq’((AA )%). With B = (AA )2 and y(B) = ZcJB'j, it follows

from (v.9) that

D4 < * 3
(0.2) c(p(A) < ccp(W(AA) ))
This reduces to (2.1) when (B) - BZ.

(. I:.equalities for Aksolute Deviations.

n
I+ e c =~ are real numbers satisfying z c; = O, then
)8

1’ ...’
(7.1) z2lel” < (3zle])”, 5 >1.
Thic inequality was proved by Gatti (1950) for s =2, and in its present

form by Birnbaum (1958). Generalizations of (7.1) can be obtained

using Theorems 2.3 and 2.4.

1A
Lerma 7.1l. If Cyr wvey Cf satisfy ‘;Ci = Q, uy = |ci|, and
ul > e 2 Uy then
ot
(?.2) E,- ’Eu ‘< (%%O’-nu,o
n n n
P;‘oof. From cl= -% ci we ilave ul = ILC | \L ui, so that
2u «Zu , and consequently u u, < 4. Of cour.,e, (u 1t /Zu <
1- 1 i 1 1 i- i-
From (2.2), it follows that for 0 <r <1,
ur o’ u u
1 n 1 n
(7.3) L s <(ﬂ yeee ﬁ)
Zu Zu

Since fp(xl,...,x ) = th,t > 1, is a Schur function, we have from

19

Ti.eoren 2.3 and (7.2),

r t 1
Zu 2
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The choice t = s/r, & > r, ylelds

(7.%) (%Zur)l/r > (-é—’z_‘.us)l/s, 02T Lyr=s .

The result (7.1) corresponds t. the case r = 1. The restriction
0<r<1l canmot be relaxed to 0 < r, as may be seen from the choice

e e
c, =1, c2_...—cn_ ) and r > 1.

Remark. If in Lemma 7.l we define wu, = h(|ci|) where h 1is

non-negative and cubadditive, i.e., h(x+y) < h(x) + h(y), then (7.2)
remains velid. The function h(x) = x', O <r <1, leads to (7.4). If
h(x) 1is non-regative and coucave for x > 0, with h(0) = O, then h(x)
is subadditive in x > 0.

As a consequence of (7.1), De Novellis (1958) proves that

(rs) ZuSﬂ' < 1z ond® for s >0 .

Using the generalized version (7.4) of (7.1), a generalized version of

7.5) can be obtained, namely,
(
-
(7.5) u o ° o< ol of, O<r<1.

From (7.2) and (7.3), we see that %_>_ uI]‘_/Zur, so that

s
o T*S . S rfu ~T
Zu /Zu” = ZIu (—) < u, < imu ,

3
Zus 1
which yields (7.v).

The role of % in (7.2) stems from the fact that c c_ can

1’ ey n

be divided into two sets with equal sums (except for sign). Suppose we

have thres set.s of positive numbers ({x)}, {y), {2z} such that
X‘l r2 r‘l'.‘
- = = "z . 3 DR ( =

) y'j 7 z) Let 4 2 2u |n Ny ton, + n5) be the
1 1 1
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ordered x's, y's, and z's. Then

!

Zu’ »+s0

By using arguments analogous to those for the case of two sets, we
obtain

1l/r
L Zu’

3 = Zu

2 |3

s)l/s, 0<r<1l,r<s,

which parallels (7.4).. The extension to the case of an arbitrary rumber

of sets is immediate.

APPENDIX

Theorem. There exists a decreasing failure rate (DFR) distribution
with moments “r = rr, r > 0.
Proof. (H. Rubin). Consider
%

r_ [ F P75 oVF ooVy oY
I x f(x)dx = e f(~7Y) e Vdy

v 0 Vv ax

o
1}

0

[ e g(y)ay

v =%

it

Fror the inversion formula, Widder (1941) p. 241,

BT T I L r
ely) = 5T rt et dr = 5 exp/r log r + y Jdr .

L =20 =30

p(y,9) e18 choosing p 1in such a

Transform from r to 6 by r

ranner that r log r + yr is real. Since

plcos =(log p+y) = o sin <] + ip[sin J(log p+y) + 7 cos Y]

r logr + yr

a +ti,

we choose b =0, i.e.,
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(A.1) log p ==-6cot 8~y .

Then

rlogr +yr = plcos 9(-9 cot 8) - 8 cos 8) = - pO csc B

= - e-y(a cse 6 e g G)
=-eV A(9) .
1 dp 2
To determine dr/d¢, note that from (a.1) ATk 6 csc 6 - cot 9, so
that
dr _ 6 i6 dp
5 =P 35 (cos 6+i sin 8) + e 3
=p csc €[{0 cot 8 - 1] + ipf csc 6 = ¢ + 41 .
Hence
e(y) = 5%; “exp[- eVA(6)] (cvdi) do = L + Mi .

o

But g(y) 1is real, so that the right-hand side must be real. This

implies that the complex term vanishes, and that

bi
1 - =
gy) =5 | cxnl- e Va(e)) eVa(e)ao
v =7
1 " - -
=i exp[- e yA(e)] e yA(e)de
Jo

£(x) = &lo1og X) % L/; e CUNI PP

which ic a mixture of exponential distributions, and is automatically

DFR.



(5]
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